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Abstract 

The purpose of t h i s  a r t i c l e  is mainly t o  demonstrate, by means of simple 

examples, t h a t  some kind of smoothing must be an  e s s e n t i a l  p a r t  of any 

s p e c t r a l  method. 

Spec t r a l  methods have, i n  pr inciple ,  i n f i n i t e  order  of accuracy, i f  the  

t r u e  so lu t ion  is smooth. I s h a l l  review some old work, done j o i n t l y  with 

Majda and McDonough [ l l ,  which shows how d r a s t i c a l l y  the s i t u a t i o n  changes 

when d i s c o n t i n u i t i e s  are present.  The e r r o r  p o l l u t e s  t h e  so lu t ion  global ly  i f  

no smoothing is used, and pol lu tes  it i n  a very l a rge  region, even i f  

smoothing based on the  f i n i t e  spec t ra l  transform is used. A more d r a s t i c  type 

of smoothing w i l l  remove t h i s  error .  

Smoothing is, i n  general ,  necessary f o r  two reasons: 

a. Accuracy 

b. S t a b i l i t y  

This  work was supported by t h e  Nat ional  Aeronautics and Space 
Administration under NASA Contract No. NAS1-15810 while the  author was i n  
residence a t  the  I n s t i t u t e  f o r  Computer Applications i n  Science and 
Engineering, NASA Langley Research Center, Hampton, VA 23665. 



1. Error  Analysis for Smooth Solutions 

I s h a l l  begin with a per iodic  one-dimensional very s i m p l e  problem: 

t o  be solved f o r  -TC < x < TC, 0 < t, with a, some f ixed  constant ,  and 

i n i t i a l  d a t a  

U(X,O) = M X ) .  

The Fourier  method proceeds by breaking up the  x I n t e r v a l  v i a  

x = vh, v 0, f l,...,f N, 
V 

wi th  (2N+l)h = 2%. For any u(x),  one f i n d s  i ts  t r igonometr ic  i n t e rpo lan t  

as follows. F i r s t  one computes the  f i n i t e  Fourier  transform: 

Then one obta ins  the  Interpolant :  
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It follows t h a t  

The approximate so lu t ion  t o  the  Cauchy problem (1.1) could be obtained by 

solving exac t ly  the  f i n i t e  dimensional problem: 

The so lu t ion  is 

(1.5) 
h N a i  j t+i j x  u ( x , t )  - 7 %j)e  

j p-N 

To f ind  the  t r u e  so lu t ion  one needs the  t r u e  Four ie r  coe f f i c i en t s :  

One then has: 

x 

-lt 
G ( j )  - 1/2n e-ijxu(x)dx. 

jar-, 

For (1.11, the t r u e  so lu t ion  is thus the  i n f i n i t e  sum: 
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Thus we  have a simple expression f o r  the  e r ror :  

The r e l a t ionsh ip  between $( j 1, 

the  f i n i t e  Fourier coe f f i c i en t  is e a s i l y  seen t o  be 

the  t rue  Fourier  coe f f i c i en t s ,  and 
h 

@(j),  

(1.10) 

See K r e i s s d l i g e r  [3] . 
Thus, we  may rewrite (1.9): 

a i j t  + i j x  (1.11) u - uh = 7 $(j)e 
1j I>N 

Now if $(XI is a smooth functio.1, i.e., @(XI E COD, then f o r  any K>O, 

t he re  e x i s t s  un iversa l  constants  Ck, SO t ha t  

This, together  with ( l o l l ) ,  i m p l i e s  
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h Nu-u I < C hp, 
P (1.12) 

in any reasonable norm, as p + 0. (We use the convention that universal 

constants are always denoted Csubscript). This explains the "inf inite" order 

accuracy. 

2. Deterioration Due to Discontinuities 

Suppose, on the other hand, 6 is not smooth at x = 0. As an example, we 

take 

(2.1) 

with 0 < u < 1, a smooth function, u E 1 if 1x1 < x - 2&, 

1x1 x - E, for small E > 0. Then 6(j) satisfies 

The approximate solution has a plobal error. Let R6 

smoothness for the exact solution 

R6 = ((x,t),'lx+atl > 6 > 0)- 

In [l] ,  we show the following global error estimate. 

Lemma 1. 

C J Z O  if 

be a region of 
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For a Heaviside funct ion type of i n i t i a l  data:  

with $(O) = 0, the  global  e r r o r  is O(h2). This anamoly occurs because of a 

cance l la t ion  i n  the  f i n i t e  Fourier  s e r i e s  €or t h i s  function. I f  we took any 

nonzero value f o r  $ ( O )  , the  e r r o r  would be O(h), as expected. 

3. A Simple and Inadequate Smoothing Technique 

For smooth @(XI defined as in the  previous sec t ion ,  we f i l t e r  the  

i n i t i a l  da ta  and use 

Note, we are s t i l l  using the  f i n i t e  Fourier  transform of the  i n i t i a l  data.  

Then 

It is shown i n  111 t h a t  

A 
max !EI\  < CAh . 

( x , t )  e RF, 
for any A > 0. 

I f  $(x) is the  Heaviside function, then we a l s o  show t h a t ,  i n  
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A EII is within O(h ), f o r  any A, of the  so lu t ion  t o  the  t r u e  Cauchy R6, 

problem (1. l ) ,  with i n i t i a l  data:  

(3 .3 )  u(x,O) - h2[C16'(0) + hC26"(0) + - 0 . 1  

Here 6(x) is  the Dirac d e l t a  funct ion,  and 6' is its d i s t r i b u t i o n  

de r iva t ive ,  etc. 

Since t h e r e  is no coupling f o r  the  problem ( l . l ) ,  t he  support of t h i s  

d i s t r i b u t i o n  does not spread i n t o  Rg when we  so lve  the  problem. Thus f q r  

t h i s  decoupled case we lucki ly  have i n f i n i t e  order  accuracy i n  But t h i s  

r e s u l t  is f a l s e  i n  more complicated cases. 

R6. 

Suppose, f o r  example, we consider the coupled hyperbolic system 

( 3 . 4 )  

with i n i t i a l  da ta  

f o r  4 the  Heaviside function. Then, t he re  is a g loba l  de t e r io ra t ion  of 

accuracy wi th in  the range of inf luence of the  orgin.  

L e t  

( l)  = ( ( x , t )  1-1 + 6 < p < 1-61 . R6 

Then the  analogous expressions fo r  E1 and EII y i e l d  the  r e s u l t s  

(1) IEII O(h 1 f o r  all A > o in R6 . 
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However, ErI is, within O(h3), t h e  s o l u t i o n  of t he  Cauchy problem ( 3 . 4 )  

with i n i t i a l  da ta  

(3.5) 

Because of t he  coupling through the lower order  terms, the  e n t i r e  shadow 

region, R6 , f e e l s  the  inf luence of t h i s  i n i t i a l  da ta  and (1) 

Thus, we have a global  de te r iora t ion  of accuracy. 

I n  earlier j o i n t  work with Majda [21, we analyzed t h i s  l a rge  error 

phenomenon f o r  d i s s i p a t i v e  f ini te-difference schemes. Since such (usua l ly  

s impler)  methods do not s t r i v e  f o r  i n f i n i t e  order  accuracy, t h e i r  comparable 

d e t e r i o r a t i o n  might not t rouble  the  f in i t e -d i f f e rence  user ,  as much as it  

might d i s t u r b  the  proponent of spec t r a l  methods. 

4. A Dras t i c  Smoothing Technique 

For constant coe f f i c i en t  l i n e a r  hyperbolic problems, we can remove the 

l a r g e  region of low accuracy by usfng and smoothing the  t rue  Four ie r  

c o e f f i c i e n t s  of the  i n i t i a l  data. Let 

Actual ly ,  i f  @(x) = ~$( l )  + 9(2), with discontinuous and p) 
smooth, we can take i f  convenient: 



We then get  i n f i n i t e  order of accuracy i n  regions where the  t r u e  so lu t ion  is 

smooth. 

This procedure is somewhat impract ical  f o r  nonl inear  shock problems, when 

The spontaneous shocks develop, because t h e i r  t r u e  Four ie r  series is  unknown. 

research a t  ICASE of Got t l ieb  and Lustman, involving f i t t i n g  i n  s p e c t r a l  

v a r i a b l e  space, is designed t o  overcome th i s .  

5 .  S t a b i l i t y  

I n  multidimensions, per iodic  l i n e a r  hyperbolic system with va r i ab le  (say 

t independent, fo r  convenience only) c o e f f i c i e n t s  can be wr i t ten :  

a d 
u =( Av(x)- + B ( x ) ) u  

v-1 axV 

= Lu. 

The naive (unsmoothed) Fourier-method approach to  t h i s  problem, would be t o  

solve: 

h h  = L u  . 
There is some controversy as t o  the s t a b i l i t y  of t h i s  method f o r  general  

v a r i a b l e  coe f f i c i en t  problems, [31, 141. 

This naive method, however, cannot work f o r  nonl inear  problems. As an 

example, we consider 
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2 
u =-+) 0 t 2 x  (5.3) 

The naive approach would be: Solve 
r( 

( 5 . 4 )  
-1 2 auh -F * i* jF(u  ) 

a t  2 
- =  

Take, say,  3 g r i d  po in t s  (N=l), with i n i t i a l  da t a  

Then 

Uh (x,O) = - -2a s i n  x 
6 

2 2a (u2(x,o))h = ?;-(l-cos x). 

The so lu t ion  t o  ( 5 . 4 )  is of the  form: 

with 

c 

2 
d a  a 
- E - .  

dt 247 

Thus a ( t )  becomes i n f i n l t e  i n  f i n i t e  t i m e ,  and t h i s  method is impract ical .  

Another approach might be t o  s t a b i l i z e ,  using smooth cutoff  f i l t e r s ,  e.g. 

( 5  7) 
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This  method would give the  same so lu t ion  i f  the  i n i t i a l  da ta  is e i t h e r  an 

expansion shock or a t r u e  shock, both moving a t  zero speed. 

u (x,O) = sgn x, gives the  same so lu t ion  as u (x,O) = -sgn X. 

This means 
h h 

2 Thus, a method which approximates u , using (F-lp(jh)Fu)* i.e., one 

which "sees" u, not j u s t  u2, must be used. 

For l i n e a r  hyperbolic problems, t o  assure  s t a b i l i t y ,  we use 

where p is the  usual  type of cutoff  function. If we so lve  (5.8) with 

i n i t i a l  da ta  u (x,O) we have i n  [ l l ,  a very general  s t a b i l i t y  theorem (see 

111 f o r  p rec i se  d e t a i l s ) .  

h 

Theorem 1. 

and 

Corollary.  I f  u(x,O) is smooth, then we have i n f i n i t e  order  accuracy, 

global ly ,  f o r  ( 5 . 4 ) .  

6 .  Convergence 

We recommend solving our s t a b i l i z e d  Four ie r  method (5 .41 ,  with the  

d r a s t i c a l l y  smoothed i n i t i a l  da t a  
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A very general  convergence theorem was proven i n  [ l l  . In  a region 

R6, which is e s s e n t i a l l y  any region of smoothness of the  t r u e  so lu t ion  t o  

(5.1), we have: 

'6,s,h 
Theorem 2. For any A > 0 and any 8 ,  1st 2 0 t he re  is a constant 

such t h a t  

Thus, t h i s  method is t r u l y  i n f i n i t e l y  order accurate. The precise  de ta i l s  

are given in i l l  . 
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